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Weak Uniform Distribution for Divisor Functions. II 

By Francis J. Rayner 

Abstract. The author's methods (reference [4]) are developed further to apply to divi- 
sor functions ai for even values of i. The results of calculations for even values of i in 
the range 4 < i < 50 are tabulated. 

1. Introduction. Throughout, the notation and definitions of the author's 
previous paper [4] will be used. For a full account of the background, see [2]. 

The function oi (x) is defined for positive integers i, x by 

oi(x) = Edi. 
d I x 

An arithmetic function f is defined to be weakly uniformly distributed modulo 
n (WUD (mod n), for short) if the set 

{x E Z: x > O,(f(x), n) = 1} 

is infinite and for every pair of integers a,, a2 with (a,, n) = (a2,n) = 1, 

#{x: O < x < t, f(x) _ a modn}- 

#{x: 0<x<t, f(x) _a2modrn} 

as t -+ oX. 

In [4] the weak uniform distribution properties of oi were studied for odd values 
of i. The algorithm embodied in [4, Lemmas 1-4] and derived from Narkiewicz 
[2] applies equally well to even values of i > 4. The improvement contained in [4, 
Propositions 1 and 2] extends to the even case, and a somewhat weaker version of 
[4, Proposition 3] can be proved (see Section 3 below). 

The result of these calculations is that we find, for even i > 4, sets K1, K2 and 
K4 of positive integers such that oa is weakly uniformly distributed modulo n if 
and only if 

(i) n is odd and not divisible by an element of K1, or 
(ii) n is even, not divisible by 6 and not divisible by any element of K2, or 
(iii) n is divisible by 6 and not divisible by any element of K4. 
At the end of this paper, tables are given of the sets K1, K2 and K4 for each i 

in the range 4 < i < 50. 
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For completeness, we recall the property of 02 proved by Narkiewicz and Rayner 

[3]: 
The function 02 is WUD (mod n) if and only if either 
(i) n is odd and not divisible by 15, or 
(ii) n is even, not divisible by 6, and not divisible by 8 or 28, or 
(iii) n is divisible by 6, and not divisible by 12, 30, 42, or 66, or 
(iv) n is divisible by 8 and not divisible by 40, or 
(v) n is divisible by 40 and not divisible by any prime p > 7 for which the order 

of 4 modulo p is odd. 
Thus, 02 does not fit the general pattern described above in respect of moduli 

divisible by 8, where a more complicated version of [4, Lemma 1] applies. However, 
as can be seen in the tables of results below, for every even i > 4, the set {15} in 
(i) is contained in Ki(i), the set {8,28} in (ii) is contained in K2(i), and the set 
{12,30,42,66} in (iii) is contained in K4(i). (Note that for i,k > 2, and all j, if 
i I k, then Kj((i) C Kj((k).) 

As in [4], the calculations of the present paper depend on properties of a set of 
primes bounded above by (i + 1)2 in the case of K1, by (2i + 1)2 in the case of 
K2, and by (4i + 1)2 in the case of K4 (see [4, Lemma 4]). In the course of the 
calculations it became clear that these bounds are too high and that a bound of 
5ij 5 in all three cases would be consistent with the primes actually found. Indeed, 
something slightly stronger might be true. This is in line with [4, Observation 
3]. If such better bounds could actually be proved, it would be easy to carry the 
calculations considerably further. 

2. Values of d. As in [4], let Vj/(x) = 1 + xi + x2i + * + xi3, let Rj(n) = 

{Vj(a) modn: a E Z, (aVj(a),n) = 1}, as a subset of the multiplicative group 
G(n) of residue classes prime to n, let Aj(n) be the subgroup of G(n) generated by 
Rj(n), and let d(n) be the least value of j > 1 for which Rj(n) :$ 0. 

In order to apply [4, Lemmas 1-4] to the case of even values of i > 4, we need 
first to determine the values of d(n) for each i. 

LEMMA 1. Let m, n be positive integers. Then Rj(n) is the image of Rj(mn) 
under the mapping induced by x mod mn -+ x mod n. 

COROLLARY 1. Aj(n) is the image of Aj(mn). 

COROLLARY 2. The following statements are equivalent: 

(i) Rj(n) :$ 0; 
(ii) For all primes p which divide n, Rj(p) :$ 0. 

COROLLARY 3. Let 4 1i and 30 1n. Then R4((n) = 0. 

Proof. (Corollary 3) G(30) is an abelian group of exponent 4; the only value 
of x1 mod 30 is 1, and so V4(x) = 5 for all x. Hence, R4(30) = 0, and the result 
follows from Lemma 1. 

LEMMA 2. For any prime p, if, for all x E G(p), xi = 1, then Rp_1(p) = 0. If 
there exists x E G(p) with xi :$ 1, then R.-1 (p) = {1}. 

Proof. In the second case, calculating in the field of p elements, V.1 (x) = 



WEAK UNIFORM DISTRIBUTION FOR DIVISOR FUNCTIONS. II 333 

COROLLARY. Let q be the least prime for which (q - 1) does not divide i. Then 
d < q -1. 

Proof. Lemma 1, Corollary 3 shows that it is enough to prove that for all p 
dividing n we have Rq-i(p) $A 0. For p :$ q we have q E Rq-i(p); for p = q, 
Lemma 2 gives Rq-1(p) = {1}. 

(This Corollary is due to Narkiewicz [1, Lemma 1].) 

PROPOSITION 1. Let i be even. 
(i) if n is odd then d(n) = 1; 
(ii) if n is even and not divisible by 6, then d(n) = 2; 
(iii) if n is divisible by 6 and not divisible by 30, then d(n) = 4. 

Proof. In case (i), 2 E Ri(n); in case (ii), 3 E R2(n); and in case (iii), R2(6) = 0 
and so, by Lemma 1, R2(n) = 0. Now 5 E R4(n). 

PROPOSITION 2. Let 30 n, and let i be even. Then oi is not WUD (mod n). 

Proof. Note that d = d(n) is even and > 4. 
Firstly, if i -2 (mod 4), numerical calculation shows R4(30) = {11}, so that 

d = 4 and A4(30) is cyclic. Since G(30) is not cyclic, R4(30) does not generate 
G(30). Secondly, if i _ 0 (mod 4), then in G(30), x4 = 1 for all x, so that Rd (30) = 

{d + 1}. Thus Ad (30) is cyclic, and (again) Rd(30) does not generate G(30). 
In either case, it follows from [4, Lemma 1] that oi is not WUD (mod n). 

3. Squares of Primes. Here the objective is to show that, in [4, Lemma 3], 
and in the calculation of the sets kj it is only necessary to consider squares of primes 
in a few cases (see the Corollary to Proposition 4 below). 

Let q denote an odd prime, and (as in [4]) define the homomorphisms 0: 
G(q2) -+ G(q) and 0(x mod q2) = x modq and 0: G(q) -+ G(q2) by 4(x modq) = 

Xq mod q2. 

PROPOSITION 3. Let q be an odd prime not dividing the integer i. Let Rj (q) and 

Rj(q2) be calculated using the polynomial Vj, where j = 1,2, or 4. Then there is a 
nontrivial character on G(q2) constant on Rj(q2) if and only if there is a nontrivial 
character on G(q) constant on Rj(q). Moreover, for j = 1 and 2, the values of the 
nontrivial character on G(q2) are (q - 1)th roots of unity and take the same value 
on R(q2) as the values of the nontrivial character on G(q) does on R(q). 

Proof. For j = 1, this is [4, Proposition 1], and for j = 2, this is [4, Proposition 
2]. In these cases, it was shown in [4] that, given a nontrivial character X on G(q2) 
taking a constant value a on Rj, the corresponding character on G(q) was X o 0 
taking the value aq on Rj(q). Since x o is nontrivial, the values of X cannot be qth 
roots of unity. Moreover, if the values of X are qtth roots of unity, then xt will be 
a nontrivial character constant on R(q2) with values which are qth roots of unity, 
and we have just seen that this cannot happen. Hence the values of X on G(q2) are 
all (q - 1)th roots of unity; since then aq = a, the characters X and X o k take the 
same values on R(q2) and R(q), respectively. 

Now suppose j > 4, and write V = Vj, and let X be a nontrivial character on 
G(q2) constant on Rj(q2). Then X o o 0 is again a character constant on Rj(q2), 
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so that X o 4 is a character on G(q) constant on Rj(q) which will be nontrivial 
unless ker x contains the subgroup of G(q2) of order (q - 1). Since q is prime and 
X is nontrivial, the only case which occurs is that in which ker X is the subgroup of 
order q - 1. Since all of Rj (q2) is contained in a single coset of this subgroup, it 
follows that R. (q2) has fewer than q elements. From Taylor's theorem, 

V(x + qy) _ V(x) + qyV'(x) mod q2, 

so that, if V'(x) is not congruent to 0 modulo q, then there are q elements of Rj(q2) 
mapped by X onto the element V (x) mod q of R. (q). Since this cannot happen, it 
follows that, whenever V(x) modq e R(q) (i.e., V(x) does not vanish modulo q), 
we have V'(x) 0 0 modq. Differentiation of the equation (1 - x')V(x) = 1 -xJi 

gives V(x) _ (j + 1)xJi mrodq whenever V'(x)- 0 mod q, so that V(x) is always 
in the (j + 1) coset of the subgroup of squares in G(q), i.e., the quadratic character 
of G(q) is constant on Rj(q). This completes the proof of Proposition 3. 

As a consequence, we can find all primes q for which there is a character mod q2 
constant on Rj(q2) by merely finding those primes for which there is a character 
mod q constant on R.(q). Further, for j = 1 and 2, if ac is not WUD (mod m), 
and m has a factor p2, then a, is not WUD (mod m/p). 

COROLLARY. Let i be even or j be even. Let there be a nontrivial character X on 
G(q2) taking the constant value 1 on Rj(q2). Then there is a nontrivial character 
on G(q) taking the constant value 1 on Rj(q). 

Proof. The character is X o k with the required property, unless ker x is the 
subgroup of G(q2) of order q - 1. In this case, the elements of R. (q) are given by 
those nonzero values of Vj (x) mod q arising from those values of x which satisfy 
Vj'(x) 0 O modq, and we have V. (x) _ (j + 1)x'3 modq. Firstly, let j =-1 modq. 
Then all values of Vj (x) are congruent to zero modulo q, so that Rj (q) = 0. 
Secondly, let j 0 mod q. Then all values of V. (x) are congruent to a square 
modulo q (since ij is even), and the quadratic character on G(q) takes the constant 
value 1 on Rj (q). Finally, let j be different from -1 and 0 modulo q. Then 
j + 1 e Rj(q), since j + 1 = V(j). However, V,'(1) = ij(j + 1)/2, which is nonzero 
mod q, so that there are q distinct elements of Rj (q2) mapped onto j + 1 mod q by 
q, which is impossible because cosets of ker X have at most q - 1 elements. 

PROPOSITION 4. Let i be even. Let p be an odd prime greater than 3 such that 
p does not divide i and such that there is a character modulo pa con-stant on Rj(pa) 
with a = 1 or 2. Let t be an integer not divisible by p, and if t 7& 1, such that also 
p is not a divisor of the order of G(t). Let Rj(pt) generate G(pt). Then R.(p2t) 
generates G(p2t). 

Proof. The case t = 1 is the Corollary to Proposition 3. By Lemma 1, Rj(p) 
generates G(p) and R. (t) generates G(t); by the Corollary to Proposition 3, Rj (p2) 
generates G(p2). Now suppose R, (p2t) does not generate G(p2t). Then there is 
a character Xi on G(p2) taking a constant value Ol 7& 1 on Rj(p2) and another 
character X2 on G(t) taking a constant value c-r1 on R. (t). Suppose e is the least 
exponent for which Oae = 1. Then e > 1 and e I p(p - 1) and e divides the order 
of G(t). Now p does not divide the order of G(t), so that e I (p - 1), and Xi o V) is 
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a character of G(p) taking the constant value a on Rj(t). Hence Rj(pt) does not 
generate G(pt), contrary to hypothesis. This completes the proof of Proposition 4. 

COROLLARY. When constructing products m of primes and squares of primes to 
test as in [4, Lemma 2] (see Section 4, stage 4 below), it is unnecessary to consider 
the square of an odd prime p unless p is a divisor of i or a divisor of s - 1, where 
s is any other prime divisor of m. Further, for j = 1 or j = 2 it is unnecessary to 
consider the square of p unless p I i. 

Proof. For j = 4 this follows from Proposition 4. For j = 1, 2 this follows from 
consideration of the characters described in the proof of Proposition 3. 

4. Calculations. Suppose that i is even and > 4. The algorithm described in 
[4] can be carried out with the benefit of Propositions 1 to 4, and is then as follows. 

Let j = 1 or 2 or 4. 
Stage 1. Determine the set Hj of all primes less than (1 + ij)2, excluding 2 in 

the case j = 1, and excluding 3 in the case j = 2. 
Stage 2. Determine the set Ij consisting of all p in Hj together with p2 (whenever 

p E Hj and p I i) and 8 (whenever 2 E Hj). 
Stage 3. Determine the set Jj of all n in Ij for which there is a nontrivial 

character of G(n) constant on Rj(n). 
Stage 4. Determine the set Kj of all integers n = H qj for which Rj(n) does not 

generate G(n), where all the qi are distinct, and for each i, either qj E Si or qi = p2 

where p E Hi n J. and p I (qj - 1) for some j :A i, and furthermore, for j = 2, n is 
even and for j = 4, n is divisible by 6. 

Then oi will fail to be WUD (mod m) if and only if 
(i) m is odd and divisible by an element of K1, or 
(ii) m is even, not divisible by 6, but divisible by an element of K2, or 
(iii) m is divisible by 6 and not divisible by 30, but divisible by an element of 

K4, or 
(iv) m is divisible by 30 (Proposition 2). 
We can incorporate case (iv) in case (iii) by including the integer 30 in each of 

the sets K4 in the tables below, and can remove as redundant from each Kd any 
integer properly divisible by another element of the same Kd. 

Calculations of K1, K2 and K4 for 4 < i < 200 have been carried out in the 
University of Liverpool Computer Laboratory, and the results for i < 50 are given 
below. The general pattern for 50 < i < 200 is similar, with no additional features 
appearing. 

During the course of the calculations for K4 it was observed that whenever the 
prime p > 5 was such that there was a nontrivial character on G(p) constant on 
R4 (p), then oi failed to be WUD (mod 6p). Thus it was never necessary to test for 
WUD (mod 6p2), etc., so that the calculations became lighter. 

As noted in Section 1 above, in the calculations of K1, K2 and K4 the upper 
bounds in stage 1 of the algorithm are much higher than necessary, and a bound of 
5i1*5 would not lead to smaller sets Jd in the range of calculations attempted. The 
indications are that this bound should apply at least for values of i up to 1225. 

It is an unsettled problem to prove that these two observations are true in general. 
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TABLES OF RESULTS 

The sets K1 (i). For odd m, oi is not WUD (mod m) if and only if m is divisible 
by an element of K1(i). 

i K1 (i) 

4 15 
6 7 15 39 57 65 95 247 
8 15 17 

10 15 33 41 55 
12 7 15 39 57 65 95 183 247 305 793 1159 
14 15 87 129 145 215 1247 
16 15 17 
18 7 15 39 57 65 95 111 185 247 481 703 
20 15 33 41 55 
22 15 23 201 335 
24 7 15 17 39 57 65 73 95 183 247 305 793 1159 
26 15 159 265 
28 15 87 113 129 145 215 1247 
30 7 15 31 33 39 41 55 57 65 95 143 183 209 247 305 671 793 1159 
32 15 17 97 193 
34 15 137 239 
36 7 15 39 57 65 73 95 109 111 183 185 247 305 481 703 793 1159 2257 
38 15 
40 15 17 33 41 55 
42 7 15 39 43 57 65 87 95 127 145 247 337 377 551 1137 1895 4927 7201 10991 
44 15 23 89 201 335 
46 15 47 417 695 
48 7 15 17 39 57 65 73 95 97 183 247 305 793 1159 3033 4381 
50 15 33 41 55 151 303 505 1111 

The sets K2 (i). For even m not divisible by 6, oi is not WUD (mod m) if and 
only if m is divisible by an element of K2 (i). 

i K2(i) 

4 8 20 26 28 70 
6 8 26 28 76 266 
8 8 20 26 28 70 164 194 410 574 

10 8 22 28 82 124 434 
12 8 20 26 28 70 74 76 146 190 266 
14 8 28 172 602 
16 8 20 26 28 68 70 164 170 194 238 410 574 1394 
18 8 26 28 74 76 146 266 362 
20 8 20 22 26 28 70 82 122 124 310 434 
22 8 28 46 134 
24 8 20 26 28 70 74 76 146 164 190 194 266 410 574 1558 
26 8 28 316 1106 
28 8 20 26 28 70 116 172 290 406 430 602 2494 
30 8 22 26 28 76 82 122 124 266 302 434 1178 
32 8 20 26 28 68 70 164 170 194 238 386 410 574 1394 
34 8 28 206 818 
36 8 20 26 28 70 74 76 146 190 218 266 362 866 
38 8 28 914 
40 8 20 22 26 28 70 82 122 124 194 310 434 482 
42 8 26 28 76 172 266 508 602 674 1634 1778 4826 10922 
44 8 20 26 28 46 70 134 
46 8 28 94 556 1946 
48 8 20 26 28 68 70 74 76 146 164 170 190 194 238 266 386 410 574 646 

1394 1558 4718 12806 
50 8 22 28 82 124 302 434 
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The sets K4 (i). For m divisible by 6, i is not WUD (mod m) if and only if m 
is divisible by an element of K4(i). 

i K4(i) 

4 12304266 
6 1230426678 186366 
8 12 30 42 66 246 

10 12 30 42 66 186 246 366 
12 12 30 42 66 78 186 366 
14 12 30 42 66 174 258 426 
16 12 30 42 66 102 246 
18 12 30 42 66 78 114 186 366 654 
20 12 30 42 66 186 246 366 606 1446 
22 12 30 42 66 138 402 534 
24 12 30 42 66 78 186 246 366 
26 12 30 42 66 786 
28 12 30 42 66 174 258 426 
30 12 30 42 66 78 186 246 366 906 1086 1446 3246 
32 12 30 42 66 102 246 
34 12 30 42 66 618 2454 
36 12 30 42 66 78 114 186 222 366 654 1086 
38 12 30 42 66 1146 1374 
40 12 30 42 66 186 246 366 606 1446 2406 
42 12 30 42 66 78 174 186 258 366 426 762 1266 2022 2526 
44 12 30 42 66 138 402 534 
46 12 30 42 66 282 
48 12 30 42 66 78 102 186 246 366 1446 
50 12 30 42 66 186 246 366 606 1506 3606 4206 7806 
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