Weak Uniform Distribution for Divisor Functions. II

By Francis J. Rayner

Abstract

The author's methods (reference [4]) are developed further to apply to divisor functions σ_{i} for even values of i. The results of calculations for even values of i in the range $4 \leq i \leq 50$ are tabulated.

1. Introduction. Throughout, the notation and definitions of the author's previous paper [4] will be used. For a full account of the background, see [2].

The function $\sigma_{i}(x)$ is defined for positive integers i, x by

$$
\sigma_{i}(x)=\sum_{d \mid x} d^{i}
$$

An arithmetic function f is defined to be weakly uniformly distributed modulo n (WUD $(\bmod n)$, for short) if the set

$$
\{x \in \mathbf{Z}: x>0,(f(x), n)=1\}
$$

is infinite and for every pair of integers a_{1}, a_{2} with $\left(a_{1}, n\right)=\left(a_{2}, n\right)=1$,

$$
\begin{gathered}
\#\left\{x: 0<x<t, f(x) \equiv a_{1} \bmod n\right\} \sim \\
\#\left\{x: 0<x<t, f(x) \equiv a_{2} \bmod n\right\}
\end{gathered}
$$

as $t \rightarrow \infty$.
In [4] the weak uniform distribution properties of σ_{i} were studied for odd values of i. The algorithm embodied in [4, Lemmas 1-4] and derived from Narkiewicz [2] applies equally well to even values of $i \geq 4$. The improvement contained in [4, Propositions 1 and 2] extends to the even case, and a somewhat weaker version of [4, Proposition 3] can be proved (see Section 3 below).

The result of these calculations is that we find, for even $i \geq 4$, sets K_{1}, K_{2} and K_{4} of positive integers such that σ_{i} is weakly uniformly distributed modulo n if and only if
(i) n is odd and not divisible by an element of K_{1}, or
(ii) n is even, not divisible by 6 and not divisible by any element of K_{2}, or
(iii) n is divisible by 6 and not divisible by any element of K_{4}.

At the end of this paper, tables are given of the sets K_{1}, K_{2} and K_{4} for each i in the range $4 \leq i \leq 50$.

[^0]For completeness, we recall the property of σ_{2} proved by Narkiewicz and Rayner [3]:

The function σ_{2} is WUD $(\bmod n)$ if and only if either
(i) n is odd and not divisible by 15 , or
(ii) n is even, not divisible by 6 , and not divisible by 8 or 28 , or
(iii) n is divisible by 6 , and not divisible by $12,30,42$, or 66 , or
(iv) n is divisible by 8 and not divisible by 40 , or
(v) n is divisible by 40 and not divisible by any prime $p \geq 7$ for which the order of 4 modulo p is odd.

Thus, σ_{2} does not fit the general pattern described above in respect of moduli divisible by 8 , where a more complicated version of [4, Lemma 1] applies. However, as can be seen in the tables of results below, for every even $i \geq 4$, the set $\{15\}$ in (i) is contained in $K_{1}(i)$, the set $\{8,28\}$ in (ii) is contained in $K_{2}(i)$, and the set $\{12,30,42,66\}$ in (iii) is contained in $K_{4}(i)$. (Note that for $i, k>2$, and all j, if $i \mid k$, then $\left.K_{j}(i) \subset K_{j}(k).\right)$

As in [4], the calculations of the present paper depend on properties of a set of primes bounded above by $(i+1)^{2}$ in the case of K_{1}, by $(2 i+1)^{2}$ in the case of K_{2}, and by $(4 i+1)^{2}$ in the case of K_{4} (see [4, Lemma 4]). In the course of the calculations it became clear that these bounds are too high and that a bound of $5 i^{1.5}$ in all three cases would be consistent with the primes actually found. Indeed, something slightly stronger might be true. This is in line with [4, Observation 3]. If such better bounds could actually be proved, it would be easy to carry the calculations considerably further.
2. Values of d. As in [4], let $V_{j}(x)=1+x^{i}+x^{2 i}+\cdots+x^{j i}$, let $R_{j}(n)=$ $\left\{V_{j}(a) \bmod n: a \in Z,\left(a V_{j}(a), n\right)=1\right\}$, as a subset of the multiplicative group $G(n)$ of residue classes prime to n, let $\Lambda_{j}(n)$ be the subgroup of $G(n)$ generated by $R_{j}(n)$, and let $d(n)$ be the least value of $j \geq 1$ for which $R_{j}(n) \neq \varnothing$.

In order to apply [4, Lemmas 1-4] to the case of even values of $i \geq 4$, we need first to determine the values of $d(n)$ for each i.

Lemma 1. Let m, n be positive integers. Then $R_{j}(n)$ is the image of $R_{j}(m n)$ under the mapping induced by $x \bmod m n \rightarrow x \bmod n$.

COROLLARY 1. $\Lambda_{j}(n)$ is the image of $\Lambda_{j}(m n)$.
Corollary 2. The following statements are equivalent:
(i) $R_{j}(n) \neq \varnothing$;
(ii) For all primes p which divide $n, R_{j}(p) \neq \varnothing$.

Corollary 3. Let $4 \mid i$ and $30 \mid n$. Then $R_{4}(n)=\varnothing$.
Proof. (Corollary 3) $G(30)$ is an abelian group of exponent 4; the only value of $x^{i} \bmod 30$ is 1 , and so $V_{4}(x)=5$ for all x. Hence, $R_{4}(30)=\varnothing$, and the result follows from Lemma 1.

Lemma 2. For any prime p, if, for all $x \in G(p), x^{i}=1$, then $R_{p-1}(p)=\varnothing$. If there exists $x \in G(p)$ with $x^{i} \neq 1$, then $R_{p-1}(p)=\{1\}$.

Proof. In the second case, calculating in the field of p elements, $V_{p-1}(x)=$ $\left(1-\left(x^{i}\right)^{p}\right) /\left(1-x^{i}\right)=1$.

Corollary. Let q be the least prime for which $(q-1)$ does not divide i. Then $d \leq q-1$.

Proof. Lemma 1, Corollary 3 shows that it is enough to prove that for all p dividing n we have $R_{q-1}(p) \neq \varnothing$. For $p \neq q$ we have $q \in R_{q-1}(p)$; for $p=q$, Lemma 2 gives $R_{q-1}(p)=\{1\}$.
(This Corollary is due to Narkiewicz [1, Lemma 1].)
Proposition 1. Let i be even.
(i) if n is odd then $d(n)=1$;
(ii) if n is even and not divisible by 6 , then $d(n)=2$;
(iii) if n is divisible by 6 and not divisible by 30 , then $d(n)=4$.

Proof. In case (i), $2 \in R_{1}(n)$; in case (ii), $3 \in R_{2}(n)$; and in case (iii), $R_{2}(6)=\varnothing$ and so, by Lemma $1, R_{2}(n)=\varnothing$. Now $5 \in R_{4}(n)$.

Proposition 2. Let $30 \mid n$, and let i be even. Then σ_{i} is not $W U D(\bmod n)$.
Proof. Note that $d=d(n)$ is even and ≥ 4.
Firstly, if $i \equiv 2(\bmod 4)$, numerical calculation shows $R_{4}(30)=\{11\}$, so that $d=4$ and $\Lambda_{4}(30)$ is cyclic. Since $G(30)$ is not cyclic, $R_{4}(30)$ does not generate $G(30)$. Secondly, if $i \equiv 0(\bmod 4)$, then in $G(30), x^{4}=1$ for all x, so that $R_{d}(30)=$ $\{d+1\}$. Thus $\Lambda_{d}(30)$ is cyclic, and (again) $R_{d}(30)$ does not generate $G(30)$.

In either case, it follows from [4, Lemma 1] that σ_{i} is not WUD $(\bmod n)$.
3. Squares of Primes. Here the objective is to show that, in [4, Lemma 3], and in the calculation of the sets k_{j} it is only necessary to consider squares of primes in a few cases (see the Corollary to Proposition 4 below).

Let q denote an odd prime, and (as in [4]) define the homomorphisms ϕ : $G\left(q^{2}\right) \rightarrow G(q)$ and $\phi\left(x \bmod q^{2}\right)=x \bmod q$ and $\psi: G(q) \rightarrow G\left(q^{2}\right)$ by $\psi(x \bmod q)=$ $x^{q} \bmod q^{2}$.

PROPOSITION 3. Let q be an odd prime not dividing the integer i. Let $R_{j}(q)$ and $R_{j}\left(q^{2}\right)$ be calculated using the polynomial V_{j}, where $j=1,2$, or 4 . Then there is a nontrivial character on $G\left(q^{2}\right)$ constant on $R_{j}\left(q^{2}\right)$ if and only if there is a nontrivial character on $G(q)$ constant on $R_{j}(q)$. Moreover, for $j=1$ and 2 , the values of the nontrivial character on $G\left(q^{2}\right)$ are $(q-1)$ th roots of unity and take the same value on $R\left(q^{2}\right)$ as the values of the nontrivial character on $G(q)$ does on $R(q)$.

Proof. For $j=1$, this is [4, Proposition 1], and for $j=2$, this is [4, Proposition 2]. In these cases, it was shown in [4] that, given a nontrivial character χ on $G\left(q^{2}\right)$ taking a constant value a on R_{j}, the corresponding character on $G(q)$ was $\chi \circ \psi$ taking the value a^{q} on $R_{j}(q)$. Since $\chi \circ \psi$ is nontrivial, the values of χ cannot be q th roots of unity. Moreover, if the values of χ are $q t$ th roots of unity, then χ^{t} will be a nontrivial character constant on $R\left(q^{2}\right)$ with values which are q th roots of unity, and we have just seen that this cannot happen. Hence the values of χ on $G\left(q^{2}\right)$ are all $(q-1)$ th roots of unity; since then $a^{q}=a$, the characters χ and $\chi \circ \psi$ take the same values on $R\left(q^{2}\right)$ and $R(q)$, respectively.

Now suppose $j \geq 4$, and write $V=V_{j}$, and let χ be a nontrivial character on $G\left(q^{2}\right)$ constant on $R_{j}\left(q^{2}\right)$. Then $\chi \circ \psi \circ \phi$ is again a character constant on $R_{j}\left(q^{2}\right)$,
so that $\chi \circ \psi$ is a character on $G(q)$ constant on $R_{j}(q)$ which will be nontrivial unless ker χ contains the subgroup of $G\left(q^{2}\right)$ of order $(q-1)$. Since q is prime and χ is nontrivial, the only case which occurs is that in which $\operatorname{ker} \chi$ is the subgroup of order $q-1$. Since all of $R_{j}\left(q^{2}\right)$ is contained in a single coset of this subgroup, it follows that $R_{\jmath}\left(q^{2}\right)$ has fewer than q elements. From Taylor's theorem,

$$
V(x+q y) \equiv V(x)+q y V^{\prime}(x) \bmod q^{2}
$$

so that, if $V^{\prime}(x)$ is not congruent to 0 modulo q, then there are q elements of $R_{j}\left(q^{2}\right)$ mapped by ϕ onto the element $V(x) \bmod q$ of $R_{\jmath}(q)$. Since this cannot happen, it follows that, whenever $V(x) \bmod q \in R(q)$ (i.e., $V(x)$ does not vanish modulo q), we have $V^{\prime}(x) \equiv 0 \bmod q$. Differentiation of the equation $\left(1-x^{\imath}\right) V(x)=1-x^{j i}$ gives $V(x) \equiv(j+1) x^{j i} \bmod q$ whenever $V^{\prime}(x) \equiv 0 \bmod q$, so that $V(x)$ is always in the $(j+1)$ coset of the subgroup of squares in $G(q)$, i.e., the quadratic character of $G(q)$ is constant on $R_{j}(q)$. This completes the proof of Proposition 3.

As a consequence, we can find all primes q for which there is a character $\bmod q^{2}$ constant on $R_{j}\left(q^{2}\right)$ by merely finding those primes for which there is a character $\bmod q$ constant on $R_{j}(q)$. Further, for $j=1$ and 2 , if σ_{i} is not WUD $(\bmod m)$, and m has a factor p^{2}, then σ_{\imath} is not WUD $(\bmod m / p)$.

COROLLARY. Let i be even or j be even. Let there be a nontrivial character χ on $G\left(q^{2}\right)$ taking the constant value 1 on $R_{j}\left(q^{2}\right)$. Then there is a nontrivial character on $G(q)$ taking the constant value 1 on $R_{j}(q)$.

Proof. The character is $\chi \circ \psi$ with the required property, unless ker χ is the subgroup of $G\left(q^{2}\right)$ of order $q-1$. In this case, the elements of $R_{\jmath}(q)$ are given by those nonzero values of $V_{j}(x) \bmod q$ arising from those values of x which satisfy $V_{j}^{\prime}(x) \equiv 0 \bmod q$, and we have $V_{\jmath}(x) \equiv(j+1) x^{2 \jmath} \bmod q$. Firstly, let $j \equiv-1 \bmod q$. Then all values of $V_{j}(x)$ are congruent to zero modulo q, so that $R_{j}(q)=\varnothing$. Secondly, let $j \equiv 0 \bmod q$. Then all values of $V_{j}(x)$ are congruent to a square modulo q (since $i j$ is even), and the quadratic character on $G(q)$ takes the constant value 1 on $R_{j}(q)$. Finally, let j be different from -1 and 0 modulo q. Then $j+1 \in R_{j}(q)$, since $j+1=V(j)$. However, $V_{j}^{\prime}(1)=i j(j+1) / 2$, which is nonzero $\bmod q$, so that there are q distinct elements of $R_{j}\left(q^{2}\right)$ mapped onto $j+1 \bmod q$ by ϕ, which is impossible because cosets of ker χ have at most $q-1$ elements.

Proposition 4. Let i be even. Let p be an odd prime greater than 3 such that p does not divide i and such that there is a character modulo p^{a} constant on $R_{j}\left(p^{a}\right)$ with $a=1$ or 2 . Let t be an integer not divisible by p, and if $t \neq 1$, such that also p is not a divisor of the order of $G(t)$. Let $R_{j}(p t)$ generate $G(p t)$. Then $R_{j}\left(p^{2} t\right)$ generates $G\left(p^{2} t\right)$.

Proof. The case $t=1$ is the Corollary to Proposition 3. By Lemma $1, R_{j}(p)$ generates $G(p)$ and $R_{\jmath}(t)$ generates $G(t)$; by the Corollary to Proposition $3, R_{j}\left(p^{2}\right)$ generates $G\left(p^{2}\right)$. Now suppose $R_{j}\left(p^{2} t\right)$ does not generate $G\left(p^{2} t\right)$. Then there is a character χ_{1} on $G\left(p^{2}\right)$ taking a constant value $\alpha \neq 1$ on $R_{j}\left(p^{2}\right)$ and another character χ_{2} on $G(t)$ taking a constant value α^{-1} on $R_{\jmath}(t)$. Suppose e is the least exponent for which $\alpha^{e}=1$. Then $e>1$ and $e \mid p(p-1)$ and e divides the order of $G(t)$. Now p does not divide the order of $G(t)$, so that $e \mid(p-1)$, and $\chi_{1} \circ \psi$ is
a character of $G(p)$ taking the constant value α on $R_{j}(t)$. Hence $R_{j}(p t)$ does not generate $G(p t)$, contrary to hypothesis. This completes the proof of Proposition 4.

COROLLARY. When constructing products m of primes and squares of primes to test as in [4, Lemma 2] (see Section 4, stage 4 below), it is unnecessary to consider the square of an odd prime p unless p is a divisor of i or a divisor of $s-1$, where s is any other prime divisor of m. Further, for $j=1$ or $j=2$ it is unnecessary to consider the square of p unless $p \mid i$.

Proof. For $j=4$ this follows from Proposition 4. For $j=1,2$ this follows from consideration of the characters described in the proof of Proposition 3.
4. Calculations. Suppose that i is even and ≥ 4. The algorithm described in [4] can be carried out with the benefit of Propositions 1 to 4, and is then as follows.

Let $j=1$ or 2 or 4 .
Stage 1. Determine the set H_{j} of all primes less than $(1+i j)^{2}$, excluding 2 in the case $j=1$, and excluding 3 in the case $j=2$.

Stage 2. Determine the set I_{j} consisting of all p in H_{j} together with p^{2} (whenever $p \in H_{j}$ and $\left.p \mid i\right)$ and 8 (whenever $2 \in H_{j}$).

Stage 3. Determine the set J_{j} of all n in I_{j} for which there is a nontrivial character of $G(n)$ constant on $R_{j}(n)$.

Stage 4. Determine the set K_{j} of all integers $n=\prod q_{i}$ for which $R_{j}(n)$ does not generate $G(n)$, where all the q_{i} are distinct, and for each i, either $q_{i} \in J_{j}$ or $q_{i}=p^{2}$ where $p \in H_{j} \cap J_{j}$ and $p \mid\left(q_{j}-1\right)$ for some $j \neq i$, and furthermore, for $j=2, n$ is even and for $j=4, n$ is divisible by 6 .

Then σ_{i} will fail to be WUD $(\bmod m)$ if and only if
(i) m is odd and divisible by an element of K_{1}, or
(ii) m is even, not divisible by 6 , but divisible by an element of K_{2}, or
(iii) m is divisible by 6 and not divisible by 30 , but divisible by an element of K_{4}, or
(iv) m is divisible by 30 (Proposition 2).

We can incorporate case (iv) in case (iii) by including the integer 30 in each of the sets K_{4} in the tables below, and can remove as redundant from each K_{d} any integer properly divisible by another element of the same K_{d}.

Calculations of K_{1}, K_{2} and K_{4} for $4 \leq i \leq 200$ have been carried out in the University of Liverpool Computer Laboratory, and the results for $i \leq 50$ are given below. The general pattern for $50<i \leq 200$ is similar, with no additional features appearing.

During the course of the calculations for K_{4} it was observed that whenever the prime $p \geq 5$ was such that there was a nontrivial character on $G(p)$ constant on $R_{4}(p)$, then σ_{i} failed to be WUD $(\bmod 6 p)$. Thus it was never necessary to test for WUD $\left(\bmod 6 p^{2}\right)$, etc., so that the calculations became lighter.

As noted in Section 1 above, in the calculations of K_{1}, K_{2} and K_{4} the upper bounds in stage 1 of the algorithm are much higher than necessary, and a bound of $5 i^{1.5}$ would not lead to smaller sets J_{d} in the range of calculations attempted. The indications are that this bound should apply at least for values of i up to 1225.

It is an unsettled problem to prove that these two observations are true in general.

Tables of Results

The sets $K_{1}(i)$. For odd m, σ_{i} is not WUD $(\bmod m)$ if and only if m is divisible by an element of $K_{1}(i)$.

i	$K_{1}(i)$
4	15
6	71539576595247
8	1517
10	15334155
12	715395765951832473057931159
14	15871291452151247
16	1517
18	71539576595111185247481703
20	15334155
22	1523201335
24	7151739576573951832473057931159
26	15159265
28	15871131291452151247
30	71531333941555765951431832092473056717931159
32	151797193
34	15137239
36	715395765739510911118318524730548170379311592257
38	15
40	1517334155
42	715394357658795127145247337377551113718954927720110991
44	152389201335
46	1547417695
48	71517395765739597183247305793115930334381
50	153341551513035051111

The sets $K_{2}(i)$. For even m not divisible by $6, \sigma_{i}$ is not WUD $(\bmod m)$ if and only if m is divisible by an element of $K_{2}(i)$.

```
i K
4 8 20 26 28 70
6 8 26 2876266
8 8 20 26 28 70 164 194 410 574
10 822 28 82 124434
12 8 20 26 28 70 74 76 146 190 266
14 8 28 172602
16 82026 28 68 70 164170194 238 410574 1394
18 8 26 28 74 76 146 266 362
20 8 80 22 26 28 70 82 122 124 310434
22 8 2846134
24 8 8026 28 70 74 76 146164190194 266 4105741558
26 8 28 316 1106
28 8 20 26 28 70 116 172 290406 430602 2494
30 822 26 28 76 82 122 124 266 302 434 1178
32 8 8 20 26 28 68 70 164170194 238 3864105741394
34 8 28 206 818
36 8 2026 28 70 74 76 146 190 218 266 362 866
38 828914
40 8 20 22 26 28 70 82 122 124194 310434482
42 8 8 26 28 76 172 266 508 602674 1634 1778 4826 10922
44 82026 2846 70 134
46 8 28 94 556 1946
48 8 20 26 28 68 70 74 76 146 164 170 190 194 238 266 386 410 574 646
    13941558471812806
50 8222882124 302434
```

The sets $K_{4}(i)$. For m divisible by $6, \sigma_{i}$ is not WUD $(\bmod m)$ if and only if m is divisible by an element of $K_{4}(i)$.

i	$K_{4}(i)$
4	12304266
6	1230426678186366
8	12304266246
10	12304266186246366
12	1230426678186366
14	12304266174258426
16	12304266102246
18	1230426678114186366654
20	123042661862463666061446
22	12304266138402534
24	1230426678186246366
26	12304266786
28	12304266174258426
30	1230426678186246366906108614463246
32	12304266102246
34	123042666182454
36	12304266781141862223666541086

Department of Pure Mathematics
The University of Liverpool
P.O. Box 147

Liverpool, Great Britain GB-L69 3BX

1. W. Narkiewicz, "Distribution of coefficients of Eisenstein series in residue classes," Acta Arith., v. 43, 1983, pp. 83-92.
2. W. NARKIEWICZ, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math., vol. 1087, Springer-Verlag, Berlin and New York, 1984.
3. W. NARKIEWICZ \& F. RAyner, "Distribution of values of $\sigma_{2}(n)$ in residue classes," Monatsh. Math., v. 94, 1982, pp. 133-141.
4. Francis J. Rayner, "Weak uniform distribution for divisor functions. I," Math. Comp., v. 50, 1988, pp. 335-342.

[^0]: Received August 23, 1984; revised September 15, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11B99; Secondary 11-04, $11 \mathrm{~A} 25,11 \mathrm{~F} 30,11 \mathrm{~N} 69$, 11 Y 99.

